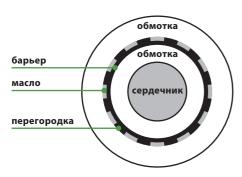
Приборы для диагностики изоляции, измерения tg Технические характеристики

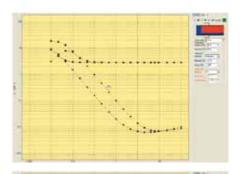
Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курок (4712)77-13-04

Липецк (4742)52-20-81


Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

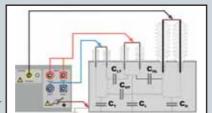
IDAX

Система диагностики состояния изоляции трансформаторного оборудования


Приборы серии IDAX обеспечивает точную и надежную оценку состояния силовых трансформаторов. IDAX реализует метод диэлектрической спектроскопии, который в течение ряда десятилетий был доступен только в лабораторных условиях. Этот испытанный в полевых условиях прибор определяет состояние изоляции внутри трансформатора при развертке по частоте, что обеспечивает возможность определения проблем, связанных с влажностью, загрязнением твердой изоляции обмоток, вводов или проводимостью масла. Одно из самых важных применений IDAX, — это определение старения и содержания влаги в изоляции трансформаторов, так как наличие влаги в изоляции значительно ускоряет процесс ее старения. IDAX обеспечивает возможность достоверной оценки содержания влаги за одно испытание. Это испытание может быть выполнено при любой температуре.

Модель

Изоляция между обмотками трансформатора состоит из барьеров, перегородок и масляных каналов для охлаждения. Модель позволяет изменять все параметры изоляции для моделирования любой возможной геометрии и использует формулу Аррениуса для включения температурной зависимости материала.



Одной точки недостаточно

Традиционное испытание коэффициента tgσ предоставляет только одно значение при частоте сети. Другое достоинство метода IDAX — анализ множества значений (кривой) для принятия обоснованного решения об имеющейся проблеме. Рисунок иллюстрирует, что одно значение коэффициента tgσ не может дать окончательную информацию о потенциальной проблеме. В этом примере два трансформатора имеют один и тот же tgσ при частоте 50 Гц. Однако один из них содержит влагу (3,6%) в масле и должен быть отправлен на осушку, в то время как масло в другом трансформаторе должно быть заменено или регенерировано.

Процедура испытаний

Подготовка к испытаниям и процедура испытаний подобна стандартной процедуре тестирования коэффициента tgg изоляции, т.е. трансформатор должен быть отключен от сети и отсоединен от всего коммуникационного оборудования. Программное обеспечение прибора IDAX будет направлять пользователя в со-

ответствии с алгоритмом испытаний, все соединения для которого проиллюстрированы на рисунке. Цветная маркировка на зажимах облегчает выполнение соединений в соответствии с встроенными инструкциями. Испытание может быть запущено сразу же после подсоединения тестовых кабелей.

Программное обеспечение прибора IDAX создает новые модельные кривые и сравнивает их с измеренной кривой до тех пор, пока не будет получено наилучшее соответствие. Конечные результаты представляются как % влаги в бумаге и в качестве отдельной величины проводимости масла.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СИСТЕМЫ ДИАГНОСТИКИ **IDAX**

IDAX 300									
Емкость С	Тангенс угла диэлектри- ческих потерь tg∆	Диапазоны напряжения/тока	Частота	Рабочая температура	Размеры	Bec	Работа без ПК		
От 10 pF до 100 мкF	0–10 (с точностью измерения емкости или выше)	0–10 В пик, 0–50 мА/ 0–200 В пик, 0–50 мА	От 0,1 мГц до 5 кГц	От –20 до +55 °C	335 х 300 х 99 мм	5 кг	-		

TRAX

Система комплексной диагностики подстанционного оборудования

TRAX является многофункциональным прибором для тестирования трансформаторных подстанций. Система заменяет многочисленные приборы для отдельных испытаний, что делает испытание с помощью TRAX эффективным с точки зрения экономии времени и денег, по сравнению с использованием набора обычных приборов.

TRAX — уникальный прибор для тестирования силовых и распределительных трансформаторов, а также большого количества другого подстанционного оборудования. Генерация до 800 A (TRAX 280) и 2200 В (2000 А и 12 кВ с принадлежностями), с частотным диапазоном регулируемым от 1 до 500 Гц, можно использовать TRAX со встроенным сенсорным экраном или внешним компьютером при управлении через веб-браузер.

Особенности и преимущества

- # Один многофункциональный прибор для тестирования трансформатора/подстанции позволяет:
 - производить большое количество типов тестов
 - экономить время, устраняя необходимость изучать большое количество приборов
 - бустрее обучаться и работать благодаря дружественному интерфейсу
 - легче передвигаться прибор портативный и компактный
- # Исключительная гибкость при выборе выходного тока или напряжения для различных тестов
 - переменный ток до 2000 A (c TCX 200)
 - постоянный ток до 100 А
 - напряжение переменного тока до 12 кВ (с TDX 120)
 - напряжение постоянного тока до 300 В

- # Структура тестирования для проведения расширенной диагностики:
 - тестирование 3-х фазного силового трансформатора:

№ коэффициент трансформации,

№ сопротивление обмотки,

N непрерывность работы РПН, временные и динамические токовые характеристики DRM (патент заявлен),

N ток возбуждения(потери XX),

 \mathbb{N} сопротивление короткого замыкания, \mathbb{N} размагничивание,

№ 3-х фазное измерение (с TSX300).

- тестирование TT и TH
- измерение тангенса дельта на высоком напряжении(с TDX 120)
- # Компактный и легкий
- # TRAX 220 26 кг (основной блок), вес <32 кг
- # Интеллектуальная технология для снижения массы кабеля

Интерфейс пользователя

Структура пользовательского интерфейса TRAX основана на ряде отдельных инструментов / приложений, в которых по умолчанию отображается только необходимая функциональность. Для ручного тестирования доступен общий инструмент, где пользователь выбирает выходы, входы измерения и как данные должны быть обработаны.

Для комплексного тестирования (например, силовых трансформаторов), результаты измерения нескольких приборов могут быть собраны и представлены в одном отчете.

Пример теста

Возможность генерации различных уровней напряжения и тока, которые могут быть измерены с высокой точностью, позволяет использовать TRAX для широкого спектра тестов.

Интеллектуальное меню TRAX

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ **TRAX**

Выходы		Выход тока 100 DC	100 А, 1 мин, 0–70 непрерывно				
Частотный диапазон для всех выходов АС	5–505 Гц	5–505 Гц Выход тока 16 DC					
Мощность выхода переменного тока	Макс. 5 кВА, 10 сек Макс. 2,5 кВА, 1 мин Макс. 1 кВА, 30 мин	Выход 250 В АС	Макс 2500 VA 0–250 В / 10, 1 мин				
Выход тока 200 АС	0–200 А, 1 мин 0–20 А непрерывно	Выход тока 2200 В АС	Макс. 2500 ВА, 0–2200 В / 1, 1 мин				
Выход тока 800 АС	0–800 А / 6 В, 10 сек 0–250 / 10 В, 1 мин	Выход 12 кВ АС	0–12 кВ/450 мА, 1 мин 0–12 кВ/300 мА, 4 мин 0–12 кВ/100 мА, непр.				
Выход тока 2000 АС	0–2000 / 2,5 В, 1 мин 0–1000 / 5 В, 1 мин	Выход 300 B DC	0-300 B / 10 A				
Мощность выхода постоянного тока	Макс. 1000 ВА, 1 мин Макс. 700 ВА, продолжительно Макс. 50 В	Двоичный выход	2×0-10000 S				
Входы							
Главный AC/DC ток	4×0–10 A	DC напряжение	4 x 0-50 B				
Главный АС/DC напряжение 4×0-250 В		Бинарный вход для измерения времени	3×0–10000 сек				

DELTA 4000

Система диагностики изоляции напряжением до 12 кВ

DELTA 4000 предназначена для обеспечения комплексной диагностики изоляции на переменном токе. Конструкция высокой мощности с регулируемой частотой позволяет генерировать свой собственный тестовый сигнал, независимый от качества частоты сети, а аппаратное обеспечение реализует новейшие технологии в области цифровой фильтрации сигнала отклика. В результате этого установки серии 4000 обеспечивают получение надежных результатов и стабильных показаний в кротчайшее время с высокой точностью, даже на подстанциях с высоким уровнем помех.

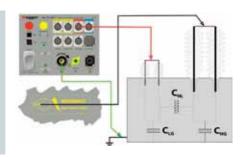
Дополнительно установки DELTA 4000 могут быть использованы для автоматического выявления изоляции, $tg\delta$ которой зависит от напряжения (tip-up tests), и контроля коэффициента трансформации по высокому напряжению (дополнительно поставляется TTR конденсатор).

Схемные решения, обеспечивающие высокую степень подавления шумов и обнаружения сигналов, позволяют оперировать с током помех до 15 мА или при отношении сигнал-шум до 1:20, что позволяет получать максимально точные и надежные результаты измерений даже в самых сложных условиях.

- # Генерирует свой собственный тестовый сигнал, обеспечивая точные и надежные измерения даже в наиболее сложных условиях, и в том случае, когда требуется питание от портативного генератора.
- # Схемные решения, обеспечивающие высокую степень подавления шумов.
- # Самый широкий частотный диапазон для этого типа оборудования (1–500 Гц), который позволяет определять:
 - метод автоматического обнаружения зависимости tg D изоляции от напряжения (в стадии патентования)
 - интеллектуальная технология коррекции температуры (в стадии патентования) позволяет пользователю оценить фактическую зависимость от температуры испытуемого объекта путем измерения tg D в определенном частотном диапаз

- # **Короткое время испытаний** динамическое подавление шумов минимизирует фактическое время проведения испытаний.
- # Выполнение контроля тангенса дельта (tg D). Когда необходимы или заданы испытания для определения tg D (Doble тест), то установки серии DELTA 4000 компании Megger полностью гарантируют выполнение
- # Самая легкая и прочная двухблочная конструкция с весом блоков 14 кг и 22 кг позволяет снизить рабочие затраты, уменьшить требуемое для работы пространство и транспортные издержки.
- # Возможность использования в различных условиях: в поле, в мобильной лаборатории, на производстве или в ремонтных цехах.

Измеряемые параметры


- # Коэффициент мощности
- # Коэффициент диэлектрических потерь (tgΔ)
- # Ток возбуждения
- # Объекты, tgo которых зависит от напряжения
- # Потери мощности
- # Индуктивность
- # Емкость
- # Напряжение
- # Ток
- # Коэффициент трансформации (опция)

Увеличена скорость измерения, за счет автоматического одновременного измерения изоляции как показано на рисунке:

Измеряется: ВН+НН-К, ВН-К и ВН-НН

Delta Control — приложение с интуитивно понятным интерфейсом для выполнения ручного тестирования, обладающее понятными и легкодоступными функциями. Элементы управления выполнены в виде обычных, механических, кнопок, за счет чего у пользователя создается ощущение, что он работает не с компьютером, а с обычным прибором в ручном режиме. Приложением можно управлять при помощи сенсорного дисплея или мыши просто нажимая на нужные кнопки.

	Delta 4110	Delta 4310			
Выходное напряжение	25–12 кВ (плавная регулировка)				
Выходной ток	300 мА (4 минуты); 100 мА (длительно)				
выходной ток	До 4 А при 12 кВ, используя дополнительный резонансный индуктор				
Диапазон измерения Tan D	0–100 % ±(0,5 % от показаний + 0,02 %)				
Диапазон измерения емкости	1 пФ до 1,1 мкФ ±(0,5 % от показаний + 1 пФ)				
Диапазон изм. индуктивности	От 6 Гн до 10 мГн ±(0,5 % от показаний + 1 мГн)				
Диапазон измерения потерь	0–2 кВт ±(1 % от показаний + 1 мВт)				
Частоты генератора	45–70 Гц (12 кВ), 15–400 Гц (4 кВ), 1–500 Гц (250 В)				
Интерфейс	Управление через ПК	Цветной экран			
Совместимость с ПО	Power DB Lite (ru)	Power DB Full (ru)			
Рабочая температура	От −20 до +55 °C				
Масса установки	14 кг + 22 кг	15 кг + 22 кг			

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81 Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16 Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13 Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93